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FINITE GEOMETRIES 
 

The method of transposition, that is, solving problems after transposing 
them to another domain, has proved to be useful in both finite projective 
and finite affine geometry.1 These are „pure‟ line geometries: points are 
seen as parts of lines, and there are no other geometrical figures than 
points and lines. An overview will be given in section one. But we can 
also define „circle geometries‟ by postulating that points are to be seen as 
parts of circles and then the obvious question is whether the method of 
transposition can also be fruitfully used in this field of research.  This is 
the subject of section two. In section three the question is addressed 
whether the results can be generalized for „curve geometries‟ in general. 
 

Finite line geometries 
 
The main idea of „transpositional tricks‟ in line geometries can easily be 
demonstrated by the problem of finding models for axioms such as 
 

1. for each two distinct points, there is exactly one line containing 
them both 

2. for each two distinct lines, there is exactly one point contained by 
both 

3. not all points are on the same line 
4. there exists at least one line 
5. every line contains exactly 3 points2 

 
For someone who is not familiar with this kind of problem: the „classical‟ 
model is Fano‟s famous „projective plane‟ (Figure 1): 

 
Figure 1 

 
Presumably it was found by Fano step by step, and by trial and error, 
starting with three points on a line.  

                                                
1 See Henk Visser (2001), Transpositional tricks, BNVKI Newsletter, Vol. 18, No. 2, reprinted in the 
ALP Newsletter (14)3. 
2There is no need for transpositions if it is required that every line contains exactly two points: just 
imagine a triangle. 
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But the problem can also be systematically solved by representing seven 
points on a circle and then choosing a triangle, representing a line 
containing three points, in such a way that it has exactly one point in 

common with each of its rotations over 2k/7 (k = 1, 2, 3, …, 6) around 
the centre of the circle (Figure 2). 

 
Figure 2 

 
This problem may in its turn be „transposed‟ to the problem of writing 7 
as a sum of three numbers in such a way that each number below 7 
appears exactly once as a partial sum, including cyclical combinations, in 
order to achieve that there are no more overlappings than in one single 
point: 
 

7 = 1 + 2 + 4 
                                                           
                                                        1 = 1 
                                                        2 = 2 
                                                        3 = 1 + 2 
                                                        4 = 4 

          5 = 4 + 1 (cyclical) 
                                                        6 = 2 + 4 

 
The resulting model can be pictured in different ways. First of all, Figure 
2 can be „completed? by adding the other six triangles, preferably in 
different colors. 
   There is also the following „numerical‟ representation: 
 

124 
235 
346 
457 
561 
672 
713 
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The cyclical character of the model is conspicuous. Notice that it has been 
lost in Fano‟s representation. Therefore I prefer the following 
representation in which each point possesses two „locations‟ (Figure 3): 
 

 
Figure 3 

 
By varying axiom 5, for example postulating that every line contains 
exactly 4 points, we get models for the resulting geometry by the 
following partitions of 13: 

 
13 = 1 + 2 + 6 + 4 
13 = 1 + 3 + 2  + 7 

 
There is no need to pursue the matter further. In this way the so-called 
finite projective „line geometries‟ may acquire models, though it can be 
proved that not every variation of axiom 5 leads to a solution. For 
example, there is no projective line geometry in which every line contains 
exactly 7 points.3 The corresponding number of points, to wit 43,  has no 
partitions with the required property. 
   Similar considerations hold for so-called finite affine line geometries. 
Here the above axiom 2 is replaced by the following axiom: 
 

2*. Through a point not on a given line there is exactly one line which 
does not meet the given line 
 

It is easy to make a model for such a geometry if it is postulated that 
every line contains exactly 2 points: just imagine a tetraeder. But the 

                                                
3This result is due to my colleague Dr. Donkers, whose java-program solved the partition problem for 
projective line geometries up to 10 points on every line.  
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problem of finding a model when every line contains exactly 3 points is 
difficult. Therefore it seems practical to shift to a domain of numbers and 
to solve the corresponding combinatorial problem, possibly with the 
following result:4 
 

 123  246  349  478  569 
                                              145  258  357    
                                              167  279  368   
                                              189 
 
However, there is little „structure‟ in the thus acquired solution, so let us 
turn to a representation with a circle, this time with center 1 and eight 
points 1, 2, …, 8 on it. Now it is possible to draw three „lines‟, that is, 
triples of points, that do not meet each other (Figure 4):  
  

 
Figure 4 

 
Starting with the line 126, we see that there are six points that are not „on‟ 
it, but through each of these points there is exactly one line which does 
not meet the given line. This has been done in such a way that only two 
more lines, 349 and 578, are needed. Now we rotate the three lines over 

/4 and we get the lines 137, 452 and 689. In the same way, we get the 
lines 148, 563, 792 and 159, 674, 823. In sum: 
 

126  349  578 
137  452  689 
148  563  792 
159  674  823 

  
It is important that for each two distinct points, there is exactly one line 
containing them both. This is reflected in the property of the partition 
 
                                                
4 John Wesley Young, Lectures on Fundamental Concepts of Algebra and Geometry. New York: The 
Macmillan Company, 1923, p. 42. 
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8 = 1 + 5 + 2 
 

that each number under 8 except 4 appears exactly once as a partial sum, 
including cyclical combinations: 
 
                                                            1 = 1 
                                                            2 = 2 
                                                            3 = 2 + 1 
                                                            5 = 5 
                                                            6 = 1 + 5 
                                                            7 = 5 + 2 

 
There is also a perspicuous representation in which each point has two 
locations (Figure 5): 
 

 
Figure 5 

 
For „higher order‟ finite affine line geometries it is useful to look for 
partitions of the number that precedes the number of points. For 
example, if every line should contain exactly 4 points, there is the 
following nice partition of 15: 
 

15 = 1 + 2 + 4 + 8 
 
Notice that there are no partial sums for 5 and 10. As a result, the 
corresponding geometrical picture with two „generating‟ lines is as 
follows (Figure 6): 
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Figure 6 

 
If every line should contain exactly 5 points, there are two partitions of 
24: 
 

24 = 1 + 2 + 8 + 9 + 4 
                                               24 = 1 + 3 + 5 + 2 + 13 

 
However, there is no model of the affine line geometry in which every 
line contains exactly 6 points.5 
   The fact that some finite projective or affine geometries „do not exist‟ is 
no reason to regard the whole system as insignificant, on the contrary: 
there are „enough‟ models and it is a challenge to delineate and explain 
the exceptions. But even when there would have been „few‟ models, their 
explanation might have been a serious question. Let us now see if this 
occurs with finite circle geometries. 
 

Finite circle geometries 
 

In order to get an idea of some possibilities of projective circle geometry, 
it is wise to consider the following axioms: 
 

I. for each two distinct points, there are exactly two circles 
containing them both 

II. for each two distinct circles, there are exactly two points 
contained by both  

 
That it is simple to satisfy these first two axioms, is shown by the 
following picture (Figure 7): 
 
                                                
5 It is again Dr. Donkers who also wrote a program for the partition problem in finite affine line 
geometries. 
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Figure 7 

 
As usual, trivial models are eliminated by two more axioms: 
 

III. not all points are on the same circle 
IV. there exists at least one circle 

 
If we want as few circles as possible, we get the following model (Figure 
8): 
 

 
Figure 8 

 
It also satisfies a special axiom: 
 

V. every circle contains exactly three points  
 
Moreover: 
 

VI. for each three distinct points, there is exactly one circle 
containing them all 

VII. for each three distinct circles, there is exactly one point 
contained by all 

 
Notice that there are only four points and four circles. But as soon as 
there are more points, the first two axioms (I, II) and the last two axioms 
(VI, VII) cannot be satisfied simultaneously. (Suppose that there are five 
points, 1, 2, 3, 4 and 5, then there are not only circles through 1, 2 and 3 
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and through 1, 2 and 4, but also through 1, 2, and 5 according to axiom 
VI, but this would imply that there are three circles through the points 1 
and 2, contrary to axiom I.) Moreover, axiom VI is not a familiar one, as 
my colleague Floris Wiesman remarked. What he had in mind was the 
Euclidean proposition that for each three distinct points not on one and 
the same line there is exactly one circle containing them all.  
   Before going to projective circle geometries with more than three points 
on every circle, we can have a look at the following obvious numerical 
representation of the model of Figure 8: 
 

123 
234 
341 
412 

 
Its cyclical nature suggests the following representation of the circle 
formed by the first three points – in the form of a triangle that can be 
rotated to get the representations of the other circles (Figure 9): 
 

 
Figure 9 

 
Apparently it can be regarded as the result of a partition, namely that of 
4: 
 

4 = 1 + 1 + 2 
 

It is easily verified that each number below 4 appears exactly twice as a 
partial sum, and this is just as it needs to be, if we want to satisfy axiom 
2. This suggests in its turn that models for line geometries with more 
than three points on every circle may be found by partitions with this 
property. 
   Suppose we require that every circle contains exactly four instead of 
three points: 
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V(4).   Every circle contains exactly four points 
 

In order to construe a model for the axioms I, II, II, IV and V(4), we look 
for a suitable partition of 7. (7 is one more than the number of circles that 
each have two points in common with the circle through the points 1, 2, 3 
and 4.) We find: 
 

7 = 1 + 1 + 2 + 3 
 

It follows that the seven circles can be read off from the following picture 
(Figure 10): 

 
Figure 10 

 
This picture is remarkable, because the points that are as yet 
unconnected, 4, 6, and 7, form a triangle that generates all the lines of a 
model for the projective line geometry we started with (Figure 11):  
 

 
Figure 11 

 
Therefore our model for the projective circle geometry with the property 
that every circle contains exactly four points and the model for the 
projective line geometry with the property that every line contains exactly 
three points can be combined in a model for the following axiom system: 
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1. for each two distinct points, there is exactly one line containing 
them  both 
2. or each two distinct lines, there is exactly one point contained 
by both 
3. not all points are on the same line 
4. there exists at least one line 
5. every line contains exactly three points 
6. for each two distinct points, there are exactly two circles 
containing them both 
7. for each two distinct circles, there are exactly two points 
contained by both  
8. not all points are on the same circle 
9. there exists at least one circle 
10. every circle contains exactly four points  
11. for each three distinct points not on the same line there is 
exactly one circle containing them all 

 
Now we understand that Fano‟s projective plane can be extended to the 
following perspicuous picture (Figure 12): 
 

 
Figure 12 

 
(Notice that the points 3, 5, 6 form a “line”, and the points 7, 1, 2, 4 a 
„circle‟.) 
   Together there are seven circles and seven lines, which we can 
represent numerically as follows: 
 

1235  467 
2346  571 
3457  612 
4561  723 
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5672  134 
6713  245 
7124  356 

 
Again we can modify the axiom that every circle contains exactly four 
points into 
 

V(5).   Every circle contains exactly five points 
 

In order to construe a model for the axioms I, II, II, IV and V(5), we look 
again for a suitable partition, this time a partition of 11, and the first 
guess is the hit on the nail: 
 

11 = 1 + 1 + 2 + 3 + 4 
 

The eleven circles can be extracted from the following picture (Figure 13): 
 

 
Figure 13 

 
There are no theoretically different partitions than the given one. It was 
again my colleague Jeroen Donkers whose computer program also 
checked the possibilities for partitions in order to find models for the 
projective circle geometries with, respectively, six, seven, eight and nine 
points on every circle. Dr. Donkers found that only the last geometry, 
that is the set of axioms, I, II, III, IV and V(9), has models: 
 

37 = 1 + 3 + 2 + 4 + 5 + 2 + 1 + 7 + 12 
37 = 1 + 2 + 4 + 10 + 7 + 1 + 4 + 6 + 2 

 
We leave projective circle geometry and proceed to projective affine 
geometry. The central idea is, of course that every circle has exactly one 
„opposite‟, that is a circle which has no points in common with it. So if 
there is a circle through three given points, then there are three more 
points that are contained by its opposite, together already six points. This 
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leads to the question whether we can make minimal models with exactly 
six points. Fortunately we have learned from affine line geometry that we 
have to draw a circle with five points on it, because its centre also 
represents a point of an affine model (Figure 14): 
 

 
Figure 14 

 
There are exactly two partitions of 5: 
 

5 = 1 + 1 + 3  
5 = 1 + 2 + 2 

 
Both lead to a set of circles, generated by the following pictures (Figure 
15 and 16): 

 
Figure 15 

 
234  156 
345  162 
456  123 
562  134 
623  145 
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Figure 16 

 
235  146 
346  152 
452  163 
563  124 
624  135 

 
I did not call these sets „models‟, because we have as yet not made our 
choice for an axiom sytem. This is an advantage if we want an affine 
circle geometry that is as „promising‟ as possible, that is, still has models 
for axioms of the form „every circle contains exactly n points‟ for „higher‟ 
values of n.  
   Nevertheless it is interesting to see that each of the above two sets is a 
model of the following axiom system: 
 

I. for each two distinct points, there are exactly two circles 
containing them both 

II. through each two distinct points not on a given circle there is 
exactly one circle which does not meet the given circle 

III. not all points are on the same circle 
IV. there exists at least one circle 
V. every circle contains exactly three points 

 
Notice that it is not the case that for each three distinct points, there is 
exactly one circle containing them all. We can achieve this by uniting the 
two sets to a model of a different axiom system: 
 

I. for each two distinct points, there are exactly four circles 
containing them both 

II. through each two distinct points not on a given circle there is 
exactly one circle which does not meet the given circle 

III. not all points are on the same circle 
IV. there exists at least one circle 
V. every circle contains exactly three points 
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VI. for each three distinct points, there is exactly one circle 
containing them all 

 
It is clear that we cannot draw a traditional picture of this model with 
twenty circles and six points that is as perspicuous as Figure 8. Already 
the ten circles of the first set present difficulties.  
   Let us now see what happens when we postulate that every circle 
contains exactly four points. It is clear that we need at least eight points 
and this means that we can proceed from a circle with seven points on it 
and a centre that joins them. Nothing is easier than to use the same 
partition of 7 as that of the corresponding projective geometry: 
 

7 = 1 + 1 + 2 + 3 
 
and add the centre of the circle to the slightly modified picture of Figure 
10 (Figure 17): 

 
Figure 17 

 
2346  1578 
3457  1682 
4568  1723 
5672  1834 
6783  1245 
7824  1356 
8235  1467 

 
We are now ready to formulate the axiom system which has this set of 
circles as a model: 
 

I. for each two distinct points, there are exactly two circles 
containing them both 

II. through each two distinct points not on a given circle there is 
exactly one circle which does not meet the given circle; let us 
call the latter circle „separate‟ from the former and conversely, 
and both circles „separate‟ from each other 
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III. not all points are on the same circle 
IV. there exists at least one circle 
V. every circle contains exactly four points 
VI. for each three distinct points, there is exactly one circle 

containing them all 
 
Here we have all the „standard‟ axioms, but we have also: 
 

VII. for each two distinct circles that are not separate from each 
other, there are exactly two points contained by both 

 
It is useful to discern such special axioms, as long as we have no uniform 
theory for affine circle geometries. In the end, we hope to have a set of 
axioms that enables us to formulate interesting problems about the 
existence or non-existence of models, for we cannot expect that every 
axiom of the form „every circle contains exactly n points‟ can be satisfied.  
   At first sight, one might think that the partition of 11 that was used in 
projective circle geometry might help us to find a model for an affine 
circle geometry with the property that every circle contains exactly five 
points: 
 

11 = 1 + 1 + 2 + 3 + 4 
  
„Just add a twelfth point and determine for the circle 1 2 3 5 8, or, in 
general for every circle of the form x, x + 1, (x +  1) + 1, ((x + 1) + 1) + 2, 
(((x + 1) + 1) + 2) + 3, a circle containing the point 12 that is apart from 
it.? 
   However, none of the 15 combinations gives the desired result. For 
example, 7 9 10 11 12, which is apart from 1 2 3 5 8, has three points in 
common with 9 10 11 2 5 and similar violations of the axiom that there is 
at most one circle through three distinct points occur with the other 
combinations. 
   Nevertheless we stick to the method of transposition by looking for 
suitable partitions. Fortunately I found among the different partitions of 
12 one special one that provided me with a model for such an affine circle 
geometry:  
 

12 = 1 + 1 + 2 + 5 + 3 
 

What makes it so special is that it is „incomplete‟ in the sense that not 
every number under 12 is the outcome of two partial sums: 6 and only 6 
does not occur as a sum in this partition. What this implies appears from 
the following numerical model generated by the partition: 
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                                                   1    2    3    5  10       
                                                   2    3    4    6  11       
                                                   3    4    5    7  12       
                                                   4    5    6    8    1      
                                                   5    6    7    9    2      
                                                   6    7    8  10    3      
                                                   7    8    9  11    4 
                                                   8    9  10  12    5 
                                                   9  10  11    1    6 
                                                 10  11  12    2    7 
                                                 11  12    1    3    8 
                                                 12    1    2    4    9 

 
Inspection reveals that there is for every circle exactly one circle that is 
apart from the given circle: 
 

1    2    3    5   10            7    8    9   11   4  
2    3    4    6   11            8    9  10   12   5  
3    4    5    7   12            9  10  11     1   6  
4    5    6    8     1          10  11  12     2   7  
5    6    7    9     2          11  12    1     3   8  
6    7    8  10     3          12    1    2     4   9 

 
However, it is not the case that there is exactly one circle for each two 
distinct points not on a given circle which is apart from the given circle. 
There is neither any circle at all through 6 and 12, nor through 7 and 1, in 
general not through the pairs of points 1 7, 2 8, 3 9, 4 10, 5 11, 6 12. 
Neither the above axiom I, nor axiom II is satisfied by this set of circles.  
   But now look at the following picture (Figure 18): 
 

 
Figure 18 
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Nothing is easier to imagine than that the points 6 and 12 lie outside the 
disjunct circles 1 2 3 5 10 and 7 8 9 11 4. This can be used when we make 
an attempt to draw the first four circles as if they were part of a Euclidean 
plane (Figure 19):                                                                                                            

 
Figure 19 

 
Then we can even add the fifth circle, 3 4 5 7 12 (Figure 20): 
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Figure 20 

 
Similarly, the sixth circle, 9 10 11 1 6, could be added, albeit in the form of 
an oval figure, and so on. 
   The existence of such a simple model suggests that we should look for 
similar incomplete partitions as the above partition of 12, and preferably 
partitions with relatively few holes. As usual, „the computer‟ helped us to 
find models which our „intuition‟ could not give us. It appeared, again 
thanks to Dr. Donkers‟ program, that there is no number that can be 
written as a sum of six numbers with that property. This dashes our 
hopes to find an affine circle geometry with the axiom that every circle 
contains exactly six points. But then there was the number 24, with the 
following partitions with seven components:6 
 

24 = 11 + 2 + 3 + 1 + 4 + 2 + 1 with holes 9 and 15 

                                                
6 The partitions are presented with the largest number first, in agreement with the print out of the 
computer. 



 19 

24 = 11 + 2 + 1 + 4 + 2 + 3 + 1 with holes 8 and 16 
24 = 10 + 3 + 4 + 2 + 3 + 1 + 1 with holes 8 and 16 
24 = 10 + 2 + 2 + 1 + 3 + 5 + 1 with holes 7 and 17 
24 = 9 + 6 + 1 + 3 + 2 + 2 + 1 with holes 11 and 13 
24 = 9 + 3 + 3 + 2 + 5 + 1 + 1 with holes 4 and 20 
24 = 9 + 1 + 6 + 2 + 3 + 2 + 1 with holes 4 and 20 
24 = 7 + 5 + 2 + 4 + 4 + 1 + 1 with holes 3 and 21 
24 = 7 + 3 + 6 + 4 + 2 + 1 + 1 with holes 5 and 19 
24 = 5 + 5 + 3 + 3 + 4 + 2 + 2 with holes 1 and 23 

 
The first partition leads to an affine geometry with an axiom that is again 
different from the standard one, according to which there would be for 
each two distinct points not on a given circle exactly one circle which is 
apart from the given circle. Consider, for example, the first circle of the 
first partition: 1  12  14  17  18  22  24. After nine rotations the tenth circle 
becomes: 10  21  23  2  3  7  9, and after fifteen rotations we get: 16  3  5  8  
9  13  15. Both circles contain the points 3 and 9, and both are apart from 
the first circle. 
   Similar conclusions hold for the other partitions, only the second and 
the third partitions deserve special attention, because of the periodical 
character of the holes. For example, the second partition, 24 = 11 + 2 + 1 
+ 4 + 2 + 3 + 1, generates the following circles: 
 
    1 12 14 15 19 21 24          9 20 22 23   3  5    8        17   4   6   7 11 13 16 
    2 13 15 16 20 22   1        10 21 23 24   4  6    9        18   5   7   8 12 14 17 
    3 14 16 17 21 23   2        11 22 24   1   5  7  10        19   6   8   9 13 15 18 
    4 15 17 18 22 24   3        12 23   1   2   6  8  11        20   7   9 10 14 16 19 
    5 16 18 19 23   1   4        13 24   2   3   7  9  12        21   8 10 11 15 17 20 
    6 17 19 20 24   2   5        14   1   3   4   8 10 13        22   9 11 12 16 18 21 
    7 18 20 21   1   3   6        15   2   4   5   9 11 14        23 10 12 13 17 19 22 
    8 19 21 22   2   4   7        16   3   5   6 10 12 15        24 11 13 14 18 20 23 
 
The upper circles of the first row, 1 12 14 15 19 21 24,  9 20 22 23 3 5 8, 
and 17 4 6 7 11 13 16 have now no points in common, but none of them 
contains the points 2 or 10 or 18. It follows that it is not the case that 
there is exactly one circle through each two distinct points not on a given 
circle which is apart from the given circle, although there is never more 
than one such a circle.  

   By inspection, we notice that none of the circles contain the pairs of 
points 1 9, 2 10, 3 11, 4 12, …, 16 24, 17 1, 18 2, …, 24 8 and hence we 
conclude that it is not the case that for each two distinct points there are 
exactly two circles containing them both. In this respect the affine circle 
geometry with 24 points is similar to that with 12 points. The question is 
how to characterize in geometrical terms the set of pairs of points that 
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violates the axioms I and II. The situation is clear: for every two circles 
that are separate from each other, there is for every point contained by 
the first circle precisely one point contained by the other circle, such that 
both points are not together contained by any circle at all. We may call 
such points „unconnected‟. Thus there is a certain duality between 
seaparate circles and unconnected points. In this respect, this model is 
similar to the model that resulted form the partition of 12, 12 = 1 + 1 + 2 
+ 5 + 3. Is this incidental?  
 
The next incomplete partitions found by Dr. Donkers occurred with 40: 
 

40 = 14 + 7 + 2 + 4 + 5 + 3 + 3 + 1 + 1 with holes 10, 20, and 30 
40 = 13 + 6 + 2 + 1 + 2 + 4 + 7 + 1 + 4 with holes 10, 20, and 30 

 
Apparently each of these partitions leads to four sets of circles. The first 
members produced by the first partition, are, respectively, 
 

1, 15, 22, 24, 28, 33, 36, 39, 40 
11, 25, 32, 34, 38, 3, 6, 9, 10 
21, 35, 2, 4, 8, 13, 16, 19, 20, 21 
31, 5, 12, 14, 18, 23, 26, 29, 30, 31 

 
None of them contains the points 7, 17, 27, and 37 and we expect that the 
pairs of unconnected points are 1 8, 2 9, 3 10, …, 40 10. 
   I conclude that the three sets of circles and points, produced by the 
„periodical‟ partitions of, respectively, 12, 24, and 24, are a sufficient 
basis for the definition of an affine circle geometry, with the axiom 
scheme that every circle contains exactly n points. Until now we have 
models for the values 5, 7, and 9 of n. The question is only whether the 
axiom scheme has models for larger values ... 
   As long as we have no general theory, we are dependent on „the 
computer‟ and I was delighted when Dr. Donkers informed me that 60 
has four different partitions with double sums, to wit:  
 
  60 = 21 + 4 + 2 + 1 + 4 + 9 + 1 + 5 + 3 + 8 + 2 with holes 12, 24, 36, 48 
  60 = 16 + 1 + 8 + 14 + 5 + 2 + 4 + 4 + 3 + 2 + 1 with holes 12, 24, 36, 48   
  60 = 15 + 2 + 11 + 7 + 9 + 5 + 1 + 4 + 3 + 1 + 2 with holes 12, 24, 36, 48      
  60 = 11 + 6 + 11 + 4 + 10 + 8 + 1 + 4 + 2 + 1 + 2 with holes 12, 24, 36, 48   
 
It follows that there is also an affine circle geometry with the property 
that every circle contains exactly 11 points. Can we proceed in the same 
way? That is to say, is there an affine circle geometry with the property 
that every circle contains exactly 13 points? Looking for periodical 
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partitions of 84 in 13 parts is still a task that we may allot to the 
computer, but it it is clear that a general theory is badly needed. 

Finite curve geometries? 
 
The defining property of projective circle geometries is that the circles 
have precisely two points in common. This required that every partial 
sum of the number of points ocurrred twice. Affine circle geometries obey 
similar restrictions. It is clear that we can also ask for partitions in which 
every partial sum occurs three, or four, or even more times. For example, 
with five points the following partition leads to five geometrical forms 
which have precisely three points in common with each other (Figure 21): 
 

5 = 2 + 1 + 1 + 1 

 
Figure 21 

 
Figure 21 shows one of these forms in the shape of a quadrangle, but it is 
obvious that we can also think of curves (Figure 22): 
 

 
Figure 22 

 
In Figure 22, two curves are drawn, one through 1, 3, 4, 5 and the other 
through 2, 4, 5, 1, and one has to imagine that there are also such curves 
through 3, 5, 1, 2 and 4, 1, 2, 3 and 5, 2, 3, 4.  

Searching for complete partitions for such curve geometries is an exercise 
that can be best entrusted to a computer. Below are some results found 
by another computer program written by Dr. Donkers. 
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   The following partitions for projective curve geometries are such that 
every two curves have three points in common: 
 
                                           11 = 4 + 2 + 1 + 2 + 1 + 1 
                                           15 = 5 + 2 + 3 + 1 + 2 + 1 + 1  
 

There are also partitions for projective curve geometries such that every 
two curves have four points in common, for example: 
 
                                     15 = 4 + 3 + 1 + 2 + 2 + 1 + 1 + 1 
                                     19 = 5 + 2 + 2 + 1 + 1 + 1 + 3 + 3 + 1 
 

Moreover, interesting partitions for projective curve geometries such that 
every two curves have five points in common were found with 19 and 
with 23, and partitions for projective curve geometries such that every 
two curves have six points in common with 13 and with 23. 
   An example of an affine curve geometry such that every two circles have 
at most three points in common is given by the following partition: 
 

16 = 6 + 3 + 1 + 1 + 2 + 2 + 1 
 
Its hole is „at‟ 8, so there are two sets of circles, and it is easy to see that 
their first members are 1, 7, 10, 11, 12, 14, 16 and 9, 15, 2, 3, 4, 6, 8 
respectively.  
   It is difficult to tell how significant such structures are. Will it be 
possible to prove general theorems about them? The answer lies in the 
future. 

 
 

 
  
 
 

 


